A Sparse Representation Method to Detect Saffron Agricultural Lands Using Sentinel-II Satellite Images Time

Authors

  • Allahyari Bek , Samira Tafresh University
  • Razaghmanesh, Ashkan Tafresh University
Abstract:

Nowadays, agricultural management via remote sensing technology has gained a special position among managers and the people who are in charge of this industry. Saffron (Red Gold) is one of specific Iran’s agricultural products with a high economic valance which is used in different fields of food and medical industries. Considering the cultivation conditions of the saffron, there has not a persistent condition to plant in farmland, and it could not be recommended to plant saffron on the same land continuously. So, their cultivation area varies every year and the prediction of annual yields could be useful for managing aims. In this paper, considering the phenological behavior of the saffron farmlands, the detection of these farmlands using a novel target detection algorithm is proposed. To do so, a time series of the Normalized Difference Vegetation Index (NDVI) extracted from Sentinel-2 satellite images have been used as the indicator of the phenological of cultivation areas. In the proposed method, a sparse representation method is used as the target detector. In this procedure, each pixel of the NDVI time series is reconstructed through a dictionary consists of the spectra-temporal response of the saffron farmland and background samples. The sub-dictionary of the background samples has randomly sampled from a clustered feature space spanned by time series pixels. A filtering step has also been designed to avoid the selection of the target-like samples in the sub-dictionary of the backgrounds. On average, the results achieved in three different datasets in the Neyshabour city have reached 93.1% accuracies. Also, the proposed method in comparison with the well-known target detectors CEM, ACE, MF, and the parallelepiped and SVM classifiers have been indicated, on average, the 4.8% accuracy improvements.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

full text

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

full text

Fast Reconstruction of SAR Images with Phase Error Using Sparse Representation

In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...

full text

Volumetric soil moisture estimation using Sentinel 1 and 2 satellite images

Surface soil moisture is an important variable that plays a crucial role in the management of water and soil resources. Estimating this parameter is one of the important applications of remote sensing. One of the remote sensing techniques for precise estimation of this parameter is data-driven models. In this study, volumetric soil moisture content was estimated using data-driven models, suppor...

full text

Oil spill detection using in Sentinel-1 satellite images based on Deep learning concepts

Awareness of the marine area is very important for crisis management in the event of an accident. Oil spills are one of the main threats to the marine and coastal environments and seriously affect the marine ecosystem and cause political and environmental concerns because it seriously affects the fragile marine and coastal ecosystem. The rate of discharge of pollutants and its related effects o...

full text

a new iris segmentation method based on sparse representation

iris recognition is one of the most reliable methods for identification. in general, itconsists of image acquisition, iris segmentation, feature extraction and matching. among them, iris segmentation has an important role on the performance of any iris recognition system. eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. in this pa...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  101- 123

publication date 2020-06

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023